GLM - Generalized Linear Models
OLS - Ordinary Least Squares
Python code
import statsmodels.api as sm
sm.OLS.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
LOGIT - Logistic Regression
Python code
import statsmodels.api as sm
sm.Logit.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
MLogit - Multinomial Logistic Regression
Python code
import statsmodels.api as sm
sm.MNLogit.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
Poisson Regression
Python code
import statsmodels.api as sm
sm.Poisson.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
Bneg - Negative Binomial Regression
Python code
import statsmodels.api as sm
sm.NegativeBinomial.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
ZIP - Zero Inflated Poisson
Python code
import statsmodels.api as sm
sm.ZeroInflatedPoisson.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()
ZINB - Zero Inflated Negative Binomial
Python code
import statsmodels.api as sm
sm.ZeroInflatedNegativeBinomial.from_formula('y ~ x1 + x2 + x3', data=df).fit().summary()